289 research outputs found

    The internal structure of a debris-covered glacier on Mars revealed by gully incision

    Get PDF
    Viscous flow features (VFFs) in Mars' mid latitudes are analogous to debris-covered glaciers on Earth. They have complex, often curvilinear patterns on their surfaces, which probably record histories of ice flow. As is the case for glaciers on Earth, patterns on the surfaces of VFFs are likely to reflect complexities in their subsurface structure. Until now, orbital observations of VFF-internal structures have remained elusive. We present observations of internal structures within a small, kilometer-scale VFF in the Nereidum Montes region of Mars' southern mid latitudes, using images from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) instruments on Mars Reconnaissance Orbiter. The VFF-internal structures are revealed by a gully incision, which extends from the VFF headwall to its terminus and intersects curvilinear undulations and a crevasse field on the VFF surface. Near to the VFF terminus, the curvilinear VFF-surface undulations connect to the VFF-internal layers, which are inclined and extend down to the VFF's deep interior, and possibly all the way to the bed. Similar structures are common near to the termini of glaciers on Earth; they form under ice flow compression where ice thins and slows approaching the ice margin, and ice flow is forced up towards the surface. We performed 3D ice flow modeling which supports this analogy, revealing that the inclined VFF-internal structures, and associated curvilinear structures on the VFF surface, are located in a zone of strong ice flow compression where ice flow deviates upwards away from the bed. The inclined VFF-internal structures we observe could represent up-warped VFF-internal layering transported up to the surface from the VFF's deep interior, or thrust structures representing debris transport pathways between the VFF's bed and its surface. Our observations raise numerous considerations for future surface missions targeting Mars' mid-latitude subsurface ice deposits. Inclined layers formed under flow compression could reduce the requirement for high-cost, high-risk deep drilling to address high-priority science questions. They could allow futures missions to (a) access ice age sequences for palaeoenvironmental reconstruction via shallow sampling along transects of ice surfaces where layers of progressively older age outcrop, and/or (b) access samples of ice/lithics transported to shallow/surface positions from environments of astrobiological interest at/near glacier beds. However, our observations also raise considerations for potential drilling hazards associated with structural complexities and potential dust/debris layers within subsurface ice deposits on Mars. They highlight the importance of characterizing VFF-surface structures, and their relationships to VFF-internal structure and ice flow histories ahead of ice access missions to Mars

    Androgen receptors in areas of the spinal cord and brainstem: A study in adult male cats

    Get PDF
    Sex hormones, including androgens and estrogens, play an important role in autonomic, reproductive and sexual behavior. The areas that are important in these behaviors lie within the spinal cord and brainstem. Relevant dysfunctional behavior in patients with altered androgen availability or androgen receptor sensitivity might be explained by the distribution of androgens and their receptors in the central nervous system. We hypothesize that autonomic dysfunction is correlated with the androgen sensitivity of spinal cord and brainstem areas responsible for autonomic functions. In this study, androgen receptor immunoreactive (AR-IR) nuclei in the spinal cord and brainstem were studied using the androgen receptor antibody PG21 in four uncastrated young adult male cats. A dense distribution of AR-IR nuclei was detected in the superior layers of the dorsal horn, including lamina I. Intensely stained nuclei, but less densely distributed, were found in lamina X and preganglionic sympathetic and parasympathetic cells of the intermediolateral cell column. Areas in the caudal brainstem showing a high density of AR-IR nuclei included the area postrema, the dorsal motor vagus nucleus and the retrotrapezoid nucleus. More cranially, the central linear nucleus in the pons contained a dense distribution of AR-IR nuclei. The mesencephalic periaqueductal gray (PAG) showed a dense distribution of AR-IR nuclei apart from the

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Chaos and flights in the atom-photon interaction in cavity QED

    Full text link
    We study dynamics of the atom-photon interaction in cavity quantum electrodynamics (QED), considering a cold two-level atom in a single-mode high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three coupled degrees of freedom: translational, internal atomic, and the field. The system proves to have different types of motion including L\'{e}vy flights and chaotic walkings of an atom in a cavity. It is shown that the translational motion, related to the atom recoils, is governed by an equation of a parametric nonlinear pendulum with a frequency modulated by the Rabi oscillations. This type of dynamics is chaotic with some width of the stochastic layer that is estimated analytically. The width is fairly small for realistic values of the control parameters, the normalized detuning δ\delta and atomic recoil frequency α\alpha. It is demonstrated how the atom-photon dynamics with a given value of α\alpha depends on the values of δ\delta and initial conditions. Two types of L\'{e}vy flights, one corresponding to the ballistic motion of the atom and another one corresponding to small oscillations in a potential well, are found. These flights influence statistical properties of the atom-photon interaction such as distribution of Poincar\'{e} recurrences and moments of the atom position xx. The simulation shows different regimes of motion, from slightly abnormal diffusion with τ1.13\sim\tau^{1.13} at δ=1.2\delta =1.2 to a superdiffusion with τ2.2 \sim \tau^{2.2} at δ=1.92\delta=1.92 that corresponds to a superballistic motion of the atom with an acceleration. The obtained results can be used to find new ways to manipulate atoms, to cool and trap them by adjusting the detuning δ\delta.Comment: 16 pages, 7 figures. To be published in Phys. Rev.

    The Renormalization Effects in the Microstrip-SQUID Amplifier

    Full text link
    The peculiarities of the microstrip-DC SQUID amplifier caused by the resonant structure of the input circuit are analyzed. It is shown that the mutual inductance, that couples the input circuit and the SQUID loop, depends on the frequency of electromagnetic field. The renormalization of the SQUID parameters due to the screening effect of the input circuit vanishes when the Josephson frequency is much greater than the signal frequency.Comment: 11 pages, 2 figure

    Scale setting for alpha_s beyond leading order

    Full text link
    We present a general procedure for incorporating higher-order information into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading coefficient or coefficients in a series in the strong coupling alpha_s are anomalously small and the original prescription can give an unphysical scale. We give a general method for computing an optimum scale numerically, within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the latter, we find significant corrections to the scales for the ratio of e+e- to hadrons over muons, the ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width, and the top decay width. Scales for the latter two decay widths, expressed in terms of MSbar masses, increase by factors of five and thirteen, respectively, substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2

    Convergence calls: multimedia storytelling at British news websites

    Get PDF
    This article uses qualitative interviews with senior editors and managers from a selection of the UK's national online news providers to describe and analyse their current experimentation with multimedia and video storytelling. The results show that, in a period of declining newspaper readership and TV news viewing, editors are keen to embrace new technologies, which are seen as being part of the future of news. At the same time, text is still reported to be the cornerstone for news websites, leading to changes in the grammar and function of news video when used online. The economic rationale for convergence is examined and the article investigates the partnerships sites have entered into in order to be able to serve their audience with video content. In-house video is complementing syndicated content, and the authors examine the resulting developments in newsroom training and recruitment practices. The article provides journalism and interactive media scholars with case studies on the changes taking place in newsrooms as a result of the shift towards multimedia, multiplatform news consumption

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure

    Primordialists and Constructionists: a typology of theories of religion

    Get PDF
    This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research
    corecore